Associated Researchers

 


 

Prof. Margarita Salas

Prof. José L. Carrascosa

Dr. Andrés Guerrero Martínez

Dr. Iván López Montero

Prof. Ana María Cuervo

Prof. Eduardo Enciso

Dr. Andrés de la Escosura

Prof. David A. Weitz

 


 

Prof. Margarita Salas

 

Margarita Salas

Group of "Replication of DNA bacteriophage

Centro de Biología Molecular Severo Ochoa

Consejo Superior de Investigaciones Científicas

C/ Nicolás Cabrera, 1

Campus de la Universidad Autónoma de Madrid

28040 Madrid, España

Telf.: +34 911964675   Ext.: 4402

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Group of "Replication of DNA bacteriophage":

We study the structural and functional basis of the mechanism of replication of ø29 DNA, that infects Bacillus subtilis, and uses the terminal protein (TP) as primer. The ø29 DNA polymerase has properties such as high processivity, strand displacement capacity and high fidelity that have made of this polymerase a very efficient biotechnological tool to amplify DNA. To improve the amplification capacity of the ø29 DNA polymerase we have fused DNA binding motifs. On the other hand, by changing the amplification conditions, we have reduced 1000-10.000 fold the amount of DNA that can be amplified.

 

Relevant publications in the last five years:

- M. de Vega, J.M. Lázaro, M. Mencía, L. Blanco and M. Salas. (2010). Improvement of ø29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proc.Natl.Acad.Sci.USA. 107, 16506-16511.

- M. Mencía, P. Gella, A. Camacho, M. de Vega and M. Salas (2011). Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage ø29. Proc.Natl.Acad.Sci.USA 108, 18655-18660.

- J.A. Morín, F.J. Cao, J.M. Lázaro, J.R. Arias-Gonzalez, J.M. Valpuesta, J.L. Carrascosa, M. Salas and B. Ibarra (2012). Active DNA unwinding dynamics during processive DNA replication.Proc.Natl.Acad.Sci.USA. 109, 8115-8120.

- P. Gella, M. Salas and M. Mencía (2014). Improved artificial origins for phage 29 terminal protein-primed replication. Insights into early replication events. Nucleic. Acids Res. 42, 9792-9806.

- Phage phi29 DNA polymerase chimera. Inventors: M. Salas, M. de Vega, J.M. Lázaro, L. Blanco and M. Mencía. Owner: Consejo Superior de Investigaciones Científicas. Patent number: US 8,404,808 B2; EP 2 450 436 B1. Date publication: March, 2013. Licensed to X-Pol Biotech (Sygnis AG). Commercialized by Qiagen.
 


 

 Prof. José L. Carrascosa

 

Carrascosa

Group of "Structure of supramolecular complexes

Departamento de Estructura de Macromoléculas

Centro Nacional de Biotencología

Consejo Superior de Investigaciones Científicas

C/ Darwin, 3

Campus de la Universidad Autónoma de Madrid

28049 Madrid, España

Telf.: +34 915854509

Fax: +34 915854506

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Group of "Structure of supramolecular complexes":

The group study macromolecular nanomachines involved in key biological functions. Our main model systems are the assembly and maturation of viral particles. To this end, we are developing multi disciplinar approaches to integrate the structural, functional and mechanic properties of viral nanomachineries involved in DNA translocation and switch controls for structural transitions. Based on our previous structural knowledge on the packaging machinery of two viral model systems (T7 and phi29), we are developing a synthetic biology approach to insert phage connectors into nano-engineered lipidic bilayers, in collaboration with the group of Francisco Monroy (UCM) and Jose M. Valpuesta. We are exploring the possibility of building up the entire packaging motor on these inserted connectors which will allow us to obtain efficient lipidic nanocontainers capable to carrying large amounts of DNA. On the other hand, we are also improving our optical tweezers set up to study, at the single molecule level, the physical properties of the membrane-inserted connectors and the molecular basis of their function.

 

Relevant publications in the last five years:

 

- Mercedes Hernando-Pérez, Elena Pascual, María Aznar, Alina Ionel, José R. Castón, Antoni Luque, José L. Carrascosa, David Reguera and Pedro J. de Pablo. The interplay between mechanics and stability of viral cages. Nanoscale, 6, 2702-2709 (2014).

 

- Ana Cuervo, Mar Pulido-Cid, Mónica Chagoyen, Rocío Arranz, Verónica A. González-García, Carmela García-Doval, José R. Castón, José M. Valpuesta, Mark J. van Raaij, Jaime Martín-Benito and José L. Carrascosa. Structural Characterización of the Bacteriophage T7 Tail Machinery. Journal of Biological Chemistry, 288, nº 36, pp., 26290-26299 (2013).

 

- María I. Daudén, Jaime Martín-Benito, Juan C. Sanchez-Ferrero, Mar Pulido Cid, José M. Valpuesta and José L. Carrascosa. Large Terminase Conformational Change Induced by Connector Binding in Bacteriphage T7. Journal of Biological Chemistry, 288, nº 23, pp., 16998-17007 (2013)

 

- Rocío Arranz, Rocío Coloma, F.Javier Chichón, José Javier Conesa, José L. Carrascosa, José Mª Valpuesta, Juan Ortín y Jaime Martín-Benito. The structure of native influenza virion ribonucleoproteins. Science, 338, 1635-1637 (2012)

 

- Laura Fumagalli, Daniel Esteban-Ferrer, Ana Cuervo, José L.Carrascosa and Gabriel Gomila. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nature Materials, 11 (9), 808-816 (2012)

 


 

Dr. Andrés Guerrero Martínez

 

foto

Group of "Nanochemistry and Supramolecular Chemistry

Departamento de Química-Física I

Facultad de Ciencias Químicas

Universidad Complutense de Madrid

Av/ Complutense, s/n

28049 Madrid, España

Telf.: +34 913944136

Fax: +34 913944135

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Group of "Nanchemistry and Supramolecular Chemistry":

The development of nanoplasmonics has been tremendous during the past two decades, driven in part by the improvements in colloidal synthesis of nanocrystals and manipulation of nanoparticle surface functionalities. This has granted access not only to exquisite control over the morphology of nanoparticles but also to novel multiparticle nanostructures with a variety of organizational motifs. We are interested in the synthesis of plasmonic nanomaterials and the study of their corresponding properties and correlations with molecular concepts that have been around for a long time. Additional thinking along these lines may lead to further expansion of nanoplasmonics and to multiple surprising discoveries in this field. We pursue molecular mimetic approaches to proceed form plasmonic atoms and molecules to plasmonic polymers and supercrystals with tailored optical properties and directionality.

 

Relevant publications in the last five years:

- J. P. Coelho, G. González-Rubio, A. Delices, J. Osío Barcina, C. Salgado, D. Ávila, O. Peña-Rodríguez, G. Tardajos, A. Guerrero-Martínez "Polyrotaxane-Mediated Self-Assembly of Gold Nanospheres into Fully Reversible Supercrystals". Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201406323.

- S. Gómez-Graña, J. Pérez-Juste, R. Álvarez-Puebla, A. Guerrero-Martínez, L. M. Liz-Marzán "Self-Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERS-Active Supercrystals". Adv. Opt. Mater. 2013, 1, 477-481 (Issue Cover).

- A. Guerrero-Martínez, M. Grzelczak, L.M. Liz-Marzán "Nanoplasmonics based on Molecular Concetps Molecular Thinking for Nanoplasmonic Design". ACS Nano 2012, 6, 3655-3662.

- A. Guerrero-Martínez, B. Auguié, J.L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M.M. Cid, L.M. Liz-Marzán "Intense Optical Activity via 3D Chiral Ordering of Plasmonic Nanoantennas". Angew. Chem. Int. Ed. 2011, 50, 5499-5503.

- A. Guerrero-Martínez, J. Pérez-Juste, L.M. Liz-Marzán. "Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterial". Adv. Mater. 2010, 22, 1182-1195 (Issue Cover)

 


 Dr. Iván López Montero

 

mitoLab

"Mitochondrial Membranes Lab

Department of Physical Chemistry I

 

School of Chemistry

 

Office QA264

 

University Complutense

 

Av. Complutense s/n

 

28040 Madrid, Spain 

 

Phone: +34 91 394 52 17

 

Fax: +34 91 394 41 35

 

Group of "Mithocondrial membranes":

 

The Mitochondrial Membrane Lab pursues the main objective of modelling interfaces for the design and the fabrication of new biomimetic drug delivery systems against mitochondrial diseases. Using biophysical and biochemical approaches, the research group is currently developing three research lines:

1. The fabrication of artificial bio-inspired systems able to in situ produce and release ATP within cells within the context of mitochondrial pathologies.

2. The study of molecular mechanisms of mitochondrial fusion for the identification of new therapeutic targets against mitochondrial diseases.

3. The design and synthesis of chemical and biological sensors for real-time visualization of intracellular ATP concentrations and the detection of mitochondrial pathologies.

 

Relevant publications in the last five years:

- López-Montero I, Catapano ER, Espinosa G, Arriaga LR, Langevin D, Monroy F. Shear and compression rheology of Langmuir monolayers of natural ceramides: solid character and plasticity. 2013. Langmuir 29: 6634-44.

- López-Montero I, Rodriguez-Garcia R, Monroy F. Artificial Spectrin Shells Reconstituted on Giant Vesicles. 2012. J. Phys Chem Lett 3, 1583-1588

- Catapano ER, Arriaga LR, Espinosa G, Monroy F, Langevin D, López-Montero I. Solid character of membrane ceramides: a surface rheology study of their mixtures with sphingomyelin. 2011. Biophys J. 101: 2721-30.

- Espinosa G, López-Montero I, Monroy F, Langevin D. Shear rheology of lipid monolayers and insights on membrane fluidity. 2011. Proc Natl Acad Sci U S A. 108: 6008-13.

- López-Montero I, Monroy F, Vélez M, Devaux PF. Ceramide: from lateral segregation to mechanical stress. 2010. Biochim Biophys Acta. 1798: 1348-56.

 


Prof. Ana María Cuervo (Albert Einstein College of Medicine; Nueva York)

 


Prof. Eduardo Enciso (Universidad Complutense)

 


 

Dr. Andrés de la Escosura (AE, Universidad Autónoma de Madrid)

 


 

Prof. David A. Weitz (Weitzlab, Universidad de Harvard)